Bounded Probabilistic Model Checking
with the Mury Verifier

Giuseppe Della Penna', Benedetto Intrigila', Igor Melattil'*,
Enrico Tronci?, and Marisa Venturini Zilli?

! Dip. di Informatica, Universitd di L’Aquila, Coppito 67100, L’Aquila, Italy
{dellapenna,intrigila,melatti}@di.univaq.it
2 Dip. di Informatica Universita di Roma “La Sapienza’
Via Salaria 113, 00198 Roma, Italy
{tronci,zilli}@dsi.uniromal.it

Abstract. In this paper we present an explicit verification algorithm for
Probabilistic Systems defining discrete time/finite state Markov Chains.
We restrict ourselves to verification of Bounded PCTL formulas
(BPCTL), that is, PCTL formulas in which all Until operators are
bounded, possibly with different bounds. This means that we consider
only paths (system runs) of bounded length. Given a Markov Chain M
and a BPCTL formula @, our algorithm checks if @ is satisfied in M.
This allows to verify important properties, such as reliability in Discrete
Time Hybrid Systems.

We present an implementation of our algorithm within a suitable exten-
sion of the Mury verifier. We call FHP-Mury (Finite Horizon Probabilis-
tic Murgp) such extension of the Muryp verifier.

We give experimental results comparing FHP-Mury with (a finite horizon
subset of) PRISM, a state-of-the-art symbolic model checker for Markov
Chains. Our experimental results show that FHP-Mury can effectively
handle verification of BPCTL formulas for systems that are out of reach
for PRISM, namely those involving arithmetic operations on the state
variables (e.g. hybrid systems).

1 Introduction

Model checking techniques [5,12,19, 18,25, 32] are widely used to verify correct-
ness of digital hardware, embedded software and protocols by modeling such
systems as Nondeterministic Finite State Systems (NFSSs).

However, there are many reactive systems that exhibit uncertainty in their
behavior, i.e. which are stochastic systems. Examples of such systems are: fault
tolerant systems, randomized distributed protocols and communication proto-
cols. Typically, stochastic systems cannot be conveniently modeled using NFSSs.
However, they can often be modeled by Markov Chains [2,15]. Roughly speaking,
a Markov Chain can be seen as an automaton labeled with (outgoing) probabil-
ities on its transitions.

* Corresponding Author: Igor Melatti. Tel: +39 0862 43 3189 Fax: +39 0862 43 3057.

A.J. Hu and A.K. Martin (Eds.): FMCAD 2004, LNCS 3312, pp. 214-229, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Bounded Probabilistic Model Checking with the Mury Verifier 215

For stochastic systems correctness can only be stated using a probabilistic
approach, e.g. using a Probabilistic Logic (e.g. [33,8,14]). This motivates the de-
velopment of Probabilistic Model Checkers [9,1,20], i.e. of model checking algo-
rithms and tools whose goal is to automatically verify (probabilistic) properties
of stochastic systems (typically Markov Chains). For example, a probabilistic
model checker may automatically verify a system property like “the probability
that a message is not delivered after 0.1 seconds is less than 0.80”. Note that,
following [20, 21], we are using the expression “probabilistic model checking” to
mean model checking of probabilistic systems.

Many methods have been proposed for probabilistic model checking, e.g. [11,
3,8,14-16,22, 31, 33].

To the best of our knowledge, currently, the state-of-the-art probabilistic
model checker is PRISM [30, 1, 21]. PRISM overcomes the limitations due to the
use of linear algebra packages in Markov Chain analysis by using Multi Terminal
Binary Decision Diagrams (MTBDDs) [7], a generalization of Ordered Binary
Decision Diagrams (OBDDs) [4] allowing real numbers in the interval [0, 1] on
terminal nodes. Roughly speaking, PRISM can use three approaches to Markov
Chain analysis. Namely: a sparse matrix based approach (based on linear algebra
packages), a symbolic approach (based on the CUDD package [10]) and a hybrid
approach, which uses MTBDDs to represent the system transition matrix and
sparse matrix algorithms to carry out the (quantitative) probabilistic analysis
[21]. As shown in [21], PRISM hybrid approach is faster than probabilistic model
checkers based only on MTBDDs (e.g., ProbVerus [34]) and avoids the state
explosion problem of probabilistic model checkers based only on sparse matrices
(e.g., ETMCC [17] or the algorithms in [14, 15]).

Here we are mainly interested in automatic analysis of discrete time/finite
state Markov Chains modeling Discrete Time Hybrid Systems. Such Markov
Chains can in principle be analyzed using PRISM. However, our experience is
that, using PRISM on our systems, quite soon we run into a state explosion
problem, i.e. we run out of memory because of the huge OBDDs built during the
model checking process. This is due to the fact that hybrid systems dynamics
typically entails many arithmetical operations on the state variables. This makes
life very hard for OBDDs, thus making usage of a symbolic probabilistic model
checker (e.g. like PRISM) on such systems rather problematic.

To this end in [27] is presented an explicit disk based algorithm for automatic
Finite Horizon safety analysis of Markov Chains. The algorithm in [27] has
been implemented in the probabilistic model checker FHP-Mury (Finite Horizon
Probabilistic Murey) [6].

The experimental results in [27] show that FHP-Murp outperforms PRISM
on (discrete time) hybrid systems verification. Note however that PRISM can
handle all PCTL [14] logic, whereas FHP-Murep only handles finite horizon safety
properties (e.g. like “the probability of reaching an error state in k steps is less
than a given threshold”). Moreover, in [28] it is shown that FHP-Murp input
language is more natural than the PRISM one in order to specify many Stochastic
Systems.

216 Giuseppe Della Penna et al.

Unfortunately there are many interesting (finite horizon) properties that can-
not be expressed as safety properties. For example reliability and robustness
properties like: “the probability of reaching within ki steps an undesired state,
which will not be left with high probability within ko steps, is low” cannot be
verified using the algorithm given in [27]. By an undesired state we mean a state
in which the system should not be, e.g. a state in which the system cannot stay
for a too long time, otherwise a damage occurs. Of course such properties can
also be handled by PRISM, however then we hit the state explosion barrier quite
soon when handling hybrid systems (our goal here).

The above considerations suggest extending FHP-Mury capabilities so as to
handle all Bounded PCTL (BPCTL) properties. That is, PCTL properties in
which all Until operators are bounded, possibly with different bounds. In other
words, we consider only paths (system runs) of bounded length. Clearly BPCTL
allows us to define reliability properties and, indeed, much more. Our results can
be summarized as follows.

— We present (Section 3) a new explicit verification algorithm for finite state/
discrete time Markov Chains. Our present algorithm can handle all BPCTL
formulas, whereas the one presented in [27] can only handle safety properties.
Moreover, our present algorithm is not a simple extension of the one in [27],
since, to handle the reliability properties we are interested in, which result in
BPCTL properties with nested Untils, we had to completely re-engineer it.
Namely, the BF (Breadth First) visit of the state transition graph in [27] has
been changed into a DF (Depth First) visit (see Section 3), with an ad-hoc
caching strategy that allows to better handle BPCTL properties with nested
Untils. Finally, our algorithm is disk based, therefore, because of the large
size of modern hard disks, memory is hardly a problem for us. Computation
time instead is our bottleneck. However, our algorithm can trade RAM with
computation time, i.e. the more RAM available the faster our computation
(see Section 3.1). To the best of our knowledge, this is the first time that
such an algorithm for probabilistic model checking is proposed.

— We present (Section 3.2) an implementation of our algorithm within the
FHP-Mure verifier.

— We present (Section 4.1) experimental results comparing our BPCTL en-
hanced FHP-Mure with PRISM on the two probabilistic dining philosophers
protocols included in the PRISM distribution, and also on the two modified
version of the same protocols presented in [27]. Our experimental results
show that BPCTL enhanced FHP-Murg can handle systems that are out of
reach for PRISM. However, as long as PRISM does not hit state explosion,
PRISM is faster than our FHP-Muryp (as to be expected).

— We present (Section 4.2) experimental results on using BPCTL enhanced
FHP-Mury for a probabilistic analysis of a “real world” hybrid system,
namely the Turbogas Control System of the Co-generative power plant de-
scribed in [26]. Because of the arithmetic operations involved in the definition
of system dynamics, this hybrid system is out of reach for OBDDs (and thus
for PRISM), whereas FHP-Mury can complete verification of interesting
reliability properties within a reasonable amount of time.

Bounded Probabilistic Model Checking with the Mury Verifier 217
2 Basic Notation

2.1 Markov Chains

Let S be a finite set. We regard functions from S to the real interval [0, 1] and
functions from S x S to [0, 1] as row vectors and as matrices, respectively. If x
is a vector and s € S we also write x, or (x), for x(s). If P is a matrix and
s,t € S we also write Py, or (P)s, for P(s,t).

On vectors and matrices we use the standard matrix operations. Namely: xP
is the row vector y s.t. ys = > ..o x;P;, and AB is the matrix C s.t. Cs; =
Djes As Bt

We define A™ in the usual way, i.e.: A? = I, A"t = A"A, where I (the
identity matriz) is the matrix defined as follows: I(s,j) = if (s = j) then 1 else
0.

jES

We denote with B the set {0, 1} of boolean values. As usual 0 stands for false
and 1 stands for true.

We give some basic definitions on Markov Chains. For further details see,
e.g. [2].

A distribution on S is a function x : S — [0, 1] s.t. >, ¢ x(i) = 1. Thus a dis-
tribution on S can be regarded as a |S|-dimensional row vector x. A distribution
x represents state j € S iff x(j) = 1 (thus x(7) = 0 when i # j).

If distribution x represents s € S, by abuse of language we also write x € S to
mean that distribution x represents a state and we use x in place of the element
of S represented by x.

In the following we often represent states using distributions. This allows us
to use matrix notation to define our computations.

Definition 1. 1. A Discrete Time Markov Chain (just Markov Chain in the
following) is a triple M = (S,P,q) where: S is a finite set (of states),
g€ S andP : S xS — [0,1] is a transition matriz, i.e. for all s € S,
Y iesP(s,t) = 1. (We included the initial state g in the Markov Chain
definition since in our context this will often shorten our notation.)

2. An execution sequence (or path) in the Markov Chain M = (S,P,q) is a
nonempty (finite or infinite) sequence ™ = s¢S182 ... where s; are states
and P(s;,si41) > 0,1 = 0,1,.... If 7 = sps152... we write w(k) for si.
The length of a finite path m = sgs152...Sk is k (number of transitions),
whereas the length of an infinite path is w. We denote with || the length of
7. We denote with Path(M, s) the set of infinite paths m in M s.t. w(0) =
s, whereas Pathy (M, s) is set of paths m in M s.t. m(0) = s and |n| = k. If
M = (S,P,q) we write also Path(M) for Path(M,q).

Moreover, we say that a state s € S is reachable in k steps when it exists a
path ™ € Pathi,(M) such that w(k) = s.

3. For s € S we denote with > (s) the smallest o-algebra on Path(M, s) which,
for any finite path p starting at s, contains the basic cylinders { =«
€ Path(M, s) | p is a prefiz of m }. The probability measure Prob on Y (s) is
the unique measure with Prob({m € Path(M,s)|p is a prefix of m}) = P(p)

218 Giuseppe Della Penna et al.

:hl_lf;g P(|p(|i), pli+1)) = P(p(0), p(1))P(p(1), p(2)) - - - P(p(k — 1), p(k)),
where k = |p|.

E.g. given a distribution x, the distribution y obtained by one execution step
of Markov Chain M = (S,P,q) is computed as: y = xP. In particular if y =
xP and x(s) = 1 we have that Vt[y(t) = (P)s.)-

The Markov Chain definition in Definition 1 is appropriate to study math-
ematical properties of Markov Chains. However Markov Chains arising from
probabilistic concurrent systems are usually defined using a suitable program-
ming language rather than a stochastic matrix. As a matter of fact the (huge)
size of the stochastic matrix of concurrent systems is one of the main obstructions
to overcome in probabilistic model checking.

Thus a Markov Chain is presented to a model checker by defining (using a
suitable programming language) a next state function that returns the needed
information about the immediate successors of a given state. The following def-
inition formalizes this notion.

Definition 2. A Probabilistic Finite State System (PFSS) S is a 4-tuple (5, g,
A, next), where S is a finite set (of states), ¢ € S, A is a finite set of labels and
next is a function taking a state s as argument and returning a set next(s) of

triplets (t,a,p) € S x A x [0,1] s.t. Z(t,a,p)enext(s)P —-1.
We can associate a Markov Chain to a PFSS in a unique way.

Definition 3. Let S = (S, ¢, A,next) be a PFSS. The Markov Chain associated
to S is S = (S,P,q), where P(s,t) =3 . ,)enext(s) P-
Moreover, a state sequence ™ = $gS1S2... 18 a path in S iff it is a path in

sme.

2.2 BPCTL

In this Section we give syntax (Definition 4) and semantics (Definition 5) for
BPCTL (Bounded PCTL). BPCTL formulas only consider PCTL formulas in
which all Until operators are bounded, possibly with different bounds. This
means that we consider only paths (system runs) of bounded length.

Definition 4. Let AP be a finite set of atomic propositions, i.e. of functions
p: S —{0,1}. The BPCTL language LgpcoTy, s the language generated by the
following grammar:

Du=tt|p| Py APy | P | XD, [01 USF G]5,
where a € [0,1] and k € N and the symbol 1 is one of the symbols >, >.

Definition 5. Let M = (S,P,q) be a Markov Chain. Then, the satisfaction
relation =C S x LppoTy, 5 defined, for all s € S, as follows:

Bounded Probabilistic Model Checking with the Mury Verifier 219

s = tt;

sEpiffp(s)=1;

—sEPIANDy iff s|EP1 and s | Pa;

— s =P iff s £ P;

s = [XP|ga iff Prob{m € Path(M,s) | n(1) = &} I o;

s | [@1 USF &y)q, iff Prob{r € Path(M,s) | 3h < ks. t. [r(h) E
Dy and Vi < h w(i) = ¢1]} J a.

Moreover, let F' be a BPCTL formula. Then, M = F iff ¢ E F.
Finally, let S be a PFSS. Then, S |= F iff S™¢ = F.

Finally, we give two definitions that will be useful in the following.

Definition 6. Let M = (S, P, q) be a Markov Chain, ®, ¥ be BPCTL formulas,
k € N and s € S. Then we write Py[® U<k @] for Prob{n € Path(M,s) | © |=
o Uk},

Definition 7. A BPCTL formula @ is said to be a U-formula iff there are
BPCTL formulas &1, 5 s.t. = [®1 USF &q]5,.

Remark 1. From Definition 5, we can intuitively see that the truth value for
s | @ can be evaluated by taking into account only paths of finite length
k, provided that k is large enough and computing, when needed, Prob{m €
Pathy (M, s) | P(m)} (for some path property P) as }- ., p() P(m).

If we denote with s |55 @ the semantics that considers only paths of length
k, then we have the following theorem.

Theorem 1. Let M = (S, P, q) be a Markov Chain and @ be a BPCTL formula.
Then, there exists a k such that, for all s € S and for allh > k, s = @ iff s =p, P.

The reader is referred, for the mathematical details, to the online appendices
of the present paper [13] (Appendix A).

3 Explicit BPCTL Model Checking

In this Section we present an explicit algorithm to verify if a PFSS S = (.5, ¢, A,
next) satisfies a given BPCTL formula F (S E F).

By Definition 5, it is clear that the most difficult case in the verification of
F is to compute the truth value of a U-formula. In [27], we solved this problem
by implementing a BF (Breadth First) visit of the S state space. However, a BF
visit it is not effective when dealing with nested U-formulas, which are exactly
the kind of formulas defining the robustness and reliability properties we are
interested in.

In fact, suppose that F' = [tt USF @], , with &; = [tt USF2 ¢|p, being
¢ and atomic proposition. To determine if a state s is such that s = F', we have
to check, for all states t that are reachable from s in at most k; steps, if ¢t = @1
that is, we have to start, for all ¢, a nested BF visit. However, it is possible to

220 Giuseppe Della Penna et al.

avoid some of these nested visits. Now we will show how, using a DF visit and
a cache, we reach this goal.

Our idea is that, using a DF visit, it is possible to compute, for all states r
reached during the computation of Pi[tt USF2 ¢] (needed to check if t = @),
the value P,[tt USF2~" @], being h the number of transitions steps leading from
t to r; this comes from the recursiveness of the DF visit itself. So, if we save in
a cache slot r, @1, h and P,[tt US*2=" @], then this latter value may be used to
avoid a nested DF visit when r is possibly reached again.

Note that the BF visit proposed in [27] is only able to say if the state s from
which we start the visit is such that s = F (or s = @1), so it is hard to apply
such a caching strategy to the algorithm proposed in [27].

The rest of this Section is organized as follows. In Sect. 3.1 we give a formal
description of our algorithm, explaining it also by means of a simple running
example; in Section 3.2 we explain how we implemented the algorithm in the
Mury verifier.

3.1 Explicit Verification of BPCTL Formulas

In this Section we give a formal description of the algorithm, verifying a generic
BPCTL formula. Let S = (.5, ¢, A, next) be a PFSS and F' be a BPCTL formula.
We want to check if S = F' (see Definition 5) holds.

The main function BPCTL, taking S and F and returning true iff S = @, is
in Figure 1. This function uses, as auxiliary functions, the following ones:

BPCTL_rec (also in Figure 1), is a recursive function that calls itself or the
other auxiliary functions, as needed by the syntactical structure of the given
BPCTL formula;

/% the main function */
bool BPCTL(PFSS S, formula F) {
return BPCTL rec(S, q, F); } /* BPCTL() */

bool BPCTL rec(PFSS S, state s, formula F) {
if (F=1) return true;
else if (F is an atomic proposition p) return p(s) =1;
else if (F = —F;) return !'BPCTL rec(S, s, Fi);
else if (F = F; A Fy)
return BPCTL rec(S, s, Fi) && BPCTL rec(S, s, F2);
else if (F =[X &]5,) return evalX(S, s, F);
else if (FE[tﬁU'T]ja) return evalU(S, s, F); } /% BPCTL_rec() */

bool evalX(PFSS S, state s, formula F) {
Let F =[X &]54;
sum = 0; /* accumulates the probability to see & in 1 step from s */
for each (s next, a, p next) in next(s) {
if (BPCTL rec(S, s next, ¥)) sum = sum + p next;
} /* for */
return (sum Ja); } /* evalX() */

Fig. 1. Functions BPCTL, BPCTL_rec and evalX

Bounded Probabilistic Model Checking with the Mury Verifier 221

cache C;

bool evalU(PFSS S, state s, formula F){
Let F =[® Uk w]q,;
{valid, result} = try to evaluate(C, s, F);
if (valid)
/* this means that function try_to_evaluate has been able to
evaluate if s =F by using only the cache */
return result;
else {
prob = DF Search(S, s, F, 0);
return prob Ja; } /* else */ } /* evallU */

double DF Search(PFSS S, state s, formula F, int horizon) {
if (BPCTL rec(S, s, ¥)) prob = 1.0;
else if (!BPCTL rec(S, s, ®#)) prob = 0.0;
else { prob = 0.0;
if (horizon < k) {
for all (s next, a, p next) in mnext(s){
prob tmp = present cache(C, s, F, k horizon));

if (prob tmp == 1) /# wvalue not found */
prob = prob + p next*DF Search(S, s mnext, F, horizon + 1);
else

prob = prob + p next*prob tmp;
Y /% for #/ Y} /¥ if ¥/ } /* else */
/* s exzploration ended, the computed value can be inserted in C */
insert cache(C, s, F, k, prob);
return prob; } /* DF_Search */

Fig. 2. Functions evalU and DF_Search

evalX (also in Figure 1), is dedicated to the evaluation of formulas of form
[X @] 50;

evalU (Figure 2), is dedicated to the evaluation of formulas of form
[QS ng Lp]ga;

DF_Search (also in Figure 2), is a recursive auxiliary function for evalU, com-
puting a finite horizon DF visit of the PFSS S.

Correctness of the Algorithm. The reader is referred, for the proof of the
algorithm correctness, to the online appendices of the present paper [13] (Ap-
pendix B).

We illustrate how our algorithm works by means of the simple PFSS S shown
in Figure 3. Given the BPCTL formula F' = [tt US2 ¢]>¢ 5, where ¢ is an atomic
proposition such that ¢(s1) = ¢(s4) = @(s7) =1 and is 0 on the other states (as
shown in Figure 3), we want to verify if so = F.

Then, from BPCTL(S, F), going through BPCTL rec and evalU, DF_Search(S,
s0, F,0) is called, and the DF visit of S begins. Supposing that prob, is the
value for the variable prob when DF_Search is called on the state s;, we have
that prob, = 0, and a recursive call to s; is made. Here, prob, = 1 (since
@(s1) = 1), and no recursive call is made; on the return to the previous call (on
s0), we have prob, = % x 1. Then, a recursive call on s5 is made, from which
other two recursive calls are made, first on s3 and then on s4. None of these
two calls makes other recursive calls: s3 because is called with horizon = 2, s4
because ¢(s4) = 1. This latter call will set prob,, = 1 and then prob, = 1.

222 Giuseppe Della Penna et al.

Fig. 3. A PFSS simple example

Now, we return in the visit to s, and now prob, = %—l— %prob52 = %—I— %% = 0.5.
Then, other two nested calls on s5 and sg are made but, since none of the two
satisfies ¢, prob, does not change. So, the final result is that sg E F, since
0.5 > 0.5. Note that sy and sg are never reached: the former because is only
reachable from sp, that is not expanded since ¢(s1) = 1, the latter because is
beyond the F' horizon, i.e. it is not reached in at most 2 steps from sg.

For what concerns the cache, it is organized as follows. Each cache slot
contains a state s (C[h].state in Figure 4) together with a U-formula F =
[® USh ¥]5, (C[hl.form), an integer h (C[h].horizon) and the respective
P,[® U=" ¥] (C[h].prob). In this way, we exploit the recursiveness of the DF
visit, which allows us to compute, for every state ¢ reached during the computa-
tion of s = F, the number P;[® US" W], where h is the number of steps that ¢
needs to reach the horizon (i.e. h = k — j, being j the number of steps from s to
t). In this way, we avoid to perform already done computations, so saving time
with a fixed amount of memory.

This saving may take place in two ways:

— when evalU calls try_to_evaluate (see Figure 4), to attempt to avoid a
call to DF_Search. This function is based on the fact that Ps[® US" @] <
P,[® USh2 @] for all s € S, BPCTL formulas @, ¥ and h; < hy. This implies
that, even if the searched pair (state, formula) is not present in the cache
with the required horizon, we can say if s = F: as an example, this happens
if the horizon stored in the cache is less than the required one, but the stored
probability is already greater than «;

— when DF_Search calls present_cache, to attempt to avoid a recursive call.
In this case, the recursive call can be avoided only if we find in the cache the
exact entry for the state, the formula and the horizon, since here we need
the exact probability value. To exemplify this, consider again Figure 3, and
suppose that there were two transitions from sy to so, both with probability
%. Then, the second recursive call on sy is avoided, since the first call has
put on the cache the value P,,[tt US! ¢], which is returned by function
present_cache.

Bounded Probabilistic Model Checking with the Mury Verifier 223

{bool, bool} try to evaluate(cache C, state s, formula F) {
Let F =[¢ USk w]q,;
/% The 4 fields of each cache slot h have the following meaning: let
C[h] form=[®P uUsé P2]ap; then, C[h] prob = Py state(P1 usen herizengo]

*/

if (<s, F> is not in C) return {false, 1I;

else {

for all j such that (C[j]l.state == s && C[j].form == F) {
if (C[jl.horizon == k) return {true, C[jl.prob J al};

else if (C[jl.horizon > k && '(C[j]l.prob I a))
return {true, false};
else if (C[j]l.horizon < k && C[jl.prob O a)
return {true, true};
} /* for */
return {false, }; } /* else #/ } /* try_to_evaluate */

Fig. 4. Function try_to_evaluate

int M = max length of the open addressing cache collision chain;

void insert cache(cache C, state s, formula F', int hor, double prob) {
h = hash(s);
while (C[h] is not empty) {
h = hash(s);
if (more than M times in this while) break;
} /* while */
if (C[h] is empty) return C[h].prob;
if (the previous while has been broken too many often w.r.t. the
number of calls to insert cache) M = M*x2;
if (C[h] contains s and F && C[h].horizon < hor)
overwrite C[h] with {s, F, hor, prob} } /* insert_cache */

Fig. 5. Function insert_cache

Finally, function insert_cache, being slightly different from the usual im-
plementation, is in Figure 5. In this function, when a free cache slot has not been
found, a slot is overwritten only if it refers to the same pair (state, formula), and
has minor horizon. In this way, we overwrite only information obtained with less
computation resources. Moreover, the hash collision chain due to open address-
ing is dynamically extended when too many insertions fail. It is so clear that
our algorithm trades memory with time: if we are given more memory, we will
have a larger cache, which will be able to store more probabilities, thus avoiding
more recursive calls to the DF visit.

3.2 Implementation Within the Mury Verifier

We implemented the algorithm given in Section 3 within the Mury verifier. We
started from FHP-Mury [27], a probabilistic version of Mure in which only a
subset of BPCTL formulas can be verified.

Since FHP-Murp already allows specification of PFSSs, the input language
has been modified only to allow definition of BPCTL formulas.

224 Giuseppe Della Penna et al.

On the other hand, the verification algorithm has been implemented along
the lines shown in Figure 1, 2 and 4. The only adjustment is in function evalU,
that cannot be implemented using standard C recursion. So, a stack has been
implemented to explicitly handle the recursive calls. Since we are in a bounded
framework, the stack size is limited, and is given by the following definition.

Definition 8. Let stack_size: Lgpory, — N be the function returning the stack
size that is needed to verify a BPCTL formula ®. Then stack_size is defined as
follows:

— stack_size(tt) = stack_size(p) = 0

— stack_size(P1 A Do) = max{stack_size(Py), stack_size(P2)}

— stack_size([XP]5) = stack_size(—P) = stack_size(P);

— stack_size([®1 USFdy)1,) = k + max{stack_size(P1), stack_size(P2)}

Hence, the amount of memory needed by the verification task is fixed, so we
have that our real bottleneck is time, and not memory. However, to handle the
case in which we need more memory than the available one, we implemented
the swap-to-disk mechanism stack cycling, which is also implemented in the
DF-based verifier SPIN [19]. With this technique, only a part of the stack is
maintained in RAM: when there is a push or a pop operation outside of the
stack part in RAM, then a disk block (containing a certain number of states) is
used to store or retrieve the desired states. This mechanism avoids too frequent
disk accesses due to repetition of push-pop operations.

In this way, we use the RAM to store part of the DF stack and of our cache.
Our experiments show that typically we can take the RAM size for the DF stack
as inversely proportional to the number of nested U-formulas, since, in this case,
it is important to have a large cache in order to speed up the verification process.

4 Experimental Results

To show the effectiveness of our approach we run two kinds of experiments.

First, in Section 4.1, we compare verifications of BPCTL formulas done with
FHP-Mury with verifications of the same models done with the probabilistic
model checker PRISM [30].

Second, in Section 4.2, we run FHP-Murp to verify a robustness property
on a quite large probabilistic hybrid systems. Since our main goal is to use
FHP-Mury to prove hybrid systems robustness properties, this second kind of
evaluation is very interesting for us.

4.1 Probabilistic Dining Philosophers

In this Section we give our experimental results on using FHP-Mury on the
probabilistic protocols included in PRISM distribution [30]. We do not consider
the protocols that lead to Markov Decision Processes or to Continuous Time
Markov Chains, since FHP-Mury cannot deal with them. Hence we only consider

Bounded Probabilistic Model Checking with the Mury Verifier

NPHIL|Result|Murp Mem (MB)[PRISM Mem (MB)| Mury Time (s) [PRISM Time (s)
5 false 5.0e+2 1.701300e+00 3.41117000e+03 | 1.318000e+00
6 false 5.0e+2 1.430420e+01 >3.0000000e+05| 1.260300e+01

225

Fig. 6. Results for the Pnueli-Zuck protocol as it is found in the PRISM distribution.
We use a machine with 2 processors (both INTEL Pentium IIT 500Mhz) and 2GB of
RAM. Murp options: -m500 (use exactly 500MB of RAM). PRISM options: default
options

NPHIL[Result|Mury Mem (MB)[PRISM Mem (MB)] Mure Time (s) [PRISM Time (s)
3 true 5.0e+2 1.419900e+00 1.79230000e+-03| 2.018000e+00
4 true 5.0e+2 2.355610e+01 1.42337890e+4-05| 1.034140e+02

Fig. 7. Results for the Lehmann-Rabin protocol as it is found in the PRISM distribu-
tion.The fields have the same meaning of Fig. 6

NPHIL|MAX_WAIT|Result|Mure Mem (MB)|PRISM Mem (MB)| Mury Time (s) [PRISM Time (s)
5 3 false 5.0e+-2 9.168246e+02 1.28381900e+-04| 1.196793e+-03
5 4 false 5.0e+2 N/A 1.27377300e+04 N/A

Fig. 8. Results for the Pnueli-Zuck protocol as it was modified in [27]. The fields have
the same meaning of Fig. 6. N/A means that PRISM was unable to complete the
verification; in this case, also the -m and -s (totally MTBDD and algebraic verification
algorithm respectively) have been used, with the same result

NPHIL|MAX_WAIT|Result|Mure Mem (MB)|PRISM Mem (MB)| Mury Time (s) [PRISM Time (s)
3 4 true 5.0e+-2 7.014830e+01 5.00634000e+03| 5.359870e+4-02
4 3 true 5.0e+-2 N/A 1.11480680e+05 N/A

Fig. 9. Results for the Lehmann-Rabin protocol as it was modified in [27]. The fields
have the same meaning of Fig. 6

Pnueli-Zuck [29] and Lehmann-Rabin [23,24] probabilistic dining philosophers
protocols. For both of these protocols, we use two versions: the one which can
be found in the PRISM distribution, and the modified version allowing quality
of service properties verifications, as it is described in [27].

For what concerns the BPCTL properties to be verified, we proceed as fol-
lows. For the models in the PRISM distribution, we choose one of the relative
BPCTL properties and we modify it so as to obtain an equivalent BPCTL prop-
erty. In fact, the PRISM BPCTL properties about these protocols are of the
type ¢p = p — [tt USF q)>a, where p and ¢ are atomic propositions. How-
ever, these formulas are not evaluated on the initial state (which is the standard
PCTL semantics), but on all reachable states. To obtain a comparable result
with FHP-Murg, we verify the property @y = [tt US? (p A =[tt USFB]s,)] <0,
where d is the diameter of the protocol state space, i.e. the length of maximum
path between two states. In this way, we have that ¢ = @, iff, for all reachable
states s, s = Pp.

Our results are in Figure 6 and 7 (with £ = 20). Note that, in these set
of experiments, which do not involve mathematical operations, PRISM works
better, while FHP-Murp take too much time to complete the verifications.

226 Giuseppe Della Penna et al.

For the modified models, we verify a reliability property. In fact, in this mod-
els, there is a set of error states, i.e. those satisfying a special atomic proposition
Gerr (informally, “a philosopher does not eat for a too long time, and dies for
starvation”). To define our reliability property, we introduce a new atomic propo-
sition ¢4, which is a weaker version of ¢,,- in the sense that, for all states s,
if s satisfies @err, then it satisfies also ¢ynq (informally, “a philosopher does not
eat for a long time, and he is in danger”). So, our undesired states are those
satisfying ¢ynq. The reader is referred, for a detailed description of ¢, and
®und, to the online appendices of the present paper [13] (Appendix C).

Now, we want to say that, when an undesired state s is reached, then the
system almost always reaches, from s and in a few steps, a non-error state. Then,
our property states that there is a low probability that if we reach in k; steps a
state s such that ¢y,nq(s) holds, and there is not a high probability of reaching,
from s and in ky = ’1“—(1) steps, a state ¢ such that —¢e,..(t). The corresponding
BPCTL formula is [tt US*1 (¢pyna A=[tt USF2 =g,]51)]<0. We give this BPCTL
formula both to PRISM and FHP-Mure.

Our results are in Figures 8 and 9 (with k3 = 20). We can observe that,
requiring these protocols some mathematical operations, there are cases (i.e.,
the last rows in Figures 8 and 9) in which no PRISM strategy (i.e., MTBDD
based, sparse matrix based, hybrid approach) is able to complete the verification
task, while FHP-Muryp does.

4.2 Analysis of a Probabilistic Hybrid System with FHP-Murp

In this section we show our experimental results on using FHP-Mury for the
analysis of a real world hybrid system. Namely, the Control System for the Gas
Turbine of a 2MW Electric Co-generative Power Plant (ICARO) in operation at
the ENEA Research Center of Casaccia (Italy).

Our control system (Turbogas Control System, TCS, in the following) is the
heart of ICARO and is indeed the most critical subsystem in ICARO. Unfortu-
nately TCS is also the largest ICARO subsystem, thus making the use of model
checking for such hybrid system a challenge.

In [26] it is shown that by adding finite precision real numbers to Muryp,
we can use Murp to automatically verify TCS. In particular in [26] it has been
shown the following. If the the speed of variation of the user demand for electric
power (MAX_D_U in the following) is greater than or equal to 25 (kW/sec), TCS
fails in maintaining ICARO parameters within the required safety ranges. A
TCS state in which one of ICARO parameters is outside its given safety range
is of course considered an error state. On the other hand, a state is considered
a undesired state when it is outside a larger safety range (the system will crash
if it stays in such a state for a too long time).

In [27] FHP-Mury has been used to verify finite horizon probabilistic safety
properties of TCS.

Here we show that by using BPCTL enhanced FHP-Murp we can verify
robustness properties of TCS. Here is an example: “if the system reaches an
undesired state, it is able to return to a mon-undesired state with a high prob-

Bounded Probabilistic Model Checking with the Mury Verifier

MAXD_U|Visited States| Rules Fired | k1 [CPU Time (s)| Probability
35 [1.159160e+4-05]3.477480e+-05|800(3.702400e4-03 [4.104681e-03
45 14.098000e+04 [1.229400e+05(700{ 1.313900e+4-03 |1.792883e-02
50 |4.067700e+404]1.220310e4-05|700| 1.307850e4-03 |3.825000e-02

Fig. 10. Results on a machine with 2 processors (both INTEL Pentium III 500Mhz)
and 2GB of RAM. Mury options used: -m500 (use 500 MB of RAM)

ability”. Our robustness property is so equivalent to say that there is a low
probability of reaching an undesired state s, such that there is not an high
probability of reaching a non-undesired state from s. The relative BPCTL for-
mula is [tt US* (=g A =[tt US*2¢]>1)]<o, where ¢ defines the undesired states.
The two constants k1 and ko are chosen in such a way that k; is sufficient to
reach an undesired state (if the first undesired state is reached in d steps, then
ki = [1451100), and ks is not too high (in our experiments, we took ks = %).

Our results are in Figure 10, where we show, in the field “Probability” the
value P,[tt USF1 (=g A =[tt USk2¢]51)], being ¢ the system initial state.

5 Conclusions

We presented (Section 3) an ezplicit verification algorithm for Probabilistic Sys-
tems defining discrete time/finite state Markov Chains. Given a Markov Chain
M and Bounded PCTL formula & our algorithm checks if M |= .

We presented (Section 3.2) an implementation of our algorithm within a
suitable extension of the Mury verifier that we call FHP-Mury (Finite Horizon
Probabilistic-Mury).

We presented (Section 4) experimental results comparing FHP-Mury with
(a finite horizon subset of) PRISM, a state-of-the-art symbolic model checker
for Markov Chains. Our experimental results show that FHP-Mure can handle
systems that are out of reach for PRISM, namely those involving arithmetic
operations on the state variables (e.g. hybrid systems).

PRISM handles Continuous Time Markov Chains (CTMC) using a symbolic
approach. This works well as long as the system dynamics does not involve
heavy arithmetical computations. To enlarge the class of automatically verifiable
probabilistic systems, future work includes extending our explicit approach to
CTMCs. Another possible research direction is to extend Mury so as to handle
unbounded until PCTL formulas.

References

1. C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.
Symbolic model checking for probabilistic processes. In Pierpaolo Degano, Roberto
Gorrieri, and Alberto Marchetti-Spaccamela, editors, ICALP’97, Proceedings, vol-
ume 1256 of LNCS, pages 430-440. Springer, 1997.

2. E. Behrends. Introduction to Markov Chains. Vieweg, 2000.

228

3.

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Giuseppe Della Penna et al.

Bianco and de Alfaro. Model checking of probabilistic and nondeterministic sys-
tems. In P. S. Thiagarajan, editor, Foundations of Software Technology and The-
oretical Computer Science, 15th Conference, Bangalore, India, December 18-20,
1995, Proceedings, volume 1026 of LNCS, pages 499-513. Springer, 1995.

R. Bryant. Graph-based algorithms for boolean function manipulation. [EFE
Trans. on Computers, C-35(8):677-691, Aug 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10%° states and beyond. Inf. Comput., 98(2):142-170, 1992.
Cached murphi web page: http://www.dsi.uniromal.it/~tronci/cached.murphi.html.
E. M. Clarke, K. L. McMillan, X Zhao, M. Fujita, and J. Yang. Spectral transforms
for large boolean functions with applications to technology mapping. In Proceedings
of the 30th international on Design automation conference, pages 54-60. ACM
Press, 1993.

. C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite-state

probabilistic programs. In Proceedings of the IEEE Conference on Decision and
Control, pages 338-345, Piscataway, NJ, 1988. IEEE Press.

Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic ver-
ification. J. ACM, 42(4):857-907, 1995.

Cudd web page: http://vlsi.colorado.edu/~fabio/.

L. de Alfaro. Formal verification of performance and reliability of real-time systems.
Technical Report STAN-CS-TR-96-1571, Stanford University, 1996.

David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol veri-
fication as a hardware design aid. In Proceedings of the 1991 IEEE International
Conference on Computer Design on VLSI in Computer € Processors, pages 522—
525. IEEE Computer Society, 1992.

Online appendices: http://www.di.univaq.it/melatti/FMCADO4//.

B. Jonsson H. Hansson. A logic for reasoning about time and probability. Formal
Aspects of Computing, 6(5):512-535, 1994.

H. Hansson. Time and Probability in Formal Design of Distributed Systems. Else-
vier, 1994.

Sergiu Hart and Micha Sharir. Probabilistic temporal logics for finite and bounded
models. In Proceedings of the sizteenth annual ACM symposium on Theory of com-
puting, pages 1-13. ACM Press, 1984.

H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A tool for model-
checking markov chains. Software Tools for Technology Transfer, 4(2):153-172, Feb
2003.

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, New
Jersey, 1991.

G. J. Holzmann. The spin model checker. IEEE Trans. on Software Engineering,
23(5):279-295, May 1997.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In Tony Field, Peter G. Harrison, Jeremy T. Bradley, and Uli Harder,
editors, TOOLS 2002, Proceedings, volume 2324 of LNCS, pages 200—204. Springer,
2002.

M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. In Joost-Pieter Katoen and Perdita Stevens,
editors, TACAS 2002, Held as Part of ETAPS 2002, Proceedings, volume 2280 of
LNCS, pages 52—66. Springer, 2002.

Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1-28, 1991.

23

24.

25.
26.

27.

28.

29.

30.
31.

32.
33.

34.

Bounded Probabilistic Model Checking with the Mury Verifier 229

D. Lehmann and M. Rabin. On the advantages of free choice: A symmetric fully
distributed solution to the dining philosophers problem (extended abstract). In
Proc. 8th Symposium on Principles of Programming Languages, pages 133—138,
1981.

N. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed
algorithms. In Proceedings of the thirteenth annual ACM symposium on Principles
of distributed computing, pages 314-323. ACM Press, 1994.

Murphi web page: http://sprout.stanford.edu/dill/murphi.html.

G. Della Penna, B. Intrigila, I. Melatti, M. Minichino, E. Ciancamerla, A. Parisse,
E. Tronci, and M. V. Zilli. Automatic verification of a turbogas control system
with the murg verifier. In Oded Maler and Amir Pnueli, editors, HSCC 2003
Proceedings, volume 2623 of LNCS, pages 141-155. Springer, 2003.

G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli. Finite hori-
zon analysis of markov chains with the mury verifier. In Daniel Geist and Enrico
Tronci, editors, CHARME 2003, Proceedings, volume 2860 of LNCS, pages 394—
409. Springer, 2003.

G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli. Finite horizon
analysis of stochastic systems with the mury verifier. In Carlo Blundo and Cosimo
Laneve, editors, ICTCS 2003, Proceedings, volume 2841 of LNCS, pages 58-71.
Springer, 2003.

A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Distrib.
Comput., 1(1):53-72, 1986.

Prism web page: http://www.cs.bham.ac.uk/~dxp/prism/.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Bengt Jonsson and Joachim Parrow, editors, CONCUR ’94, Proceedings, volume
836 of LNCS, pages 481-496. Springer, 1994.

Spin web page: http://spinroot.com.

M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In 26th Annual Symposium on Foundations of Computer Science, pages 327—-338,
Portland, Oregon, Oct 1985. IEEE CS Press.

E. M. Clarke V. Hartonas-Garmhausen, S. V. Aguiar Campos. Probverus: Prob-
abilistic symbolic model checking. In Joost-Pieter Katoen, editor, ARTS’99, Pro-
ceedings, volume 1601 of LNCS, pages 96-110. Springer, 1999.

	1 Introduction
	2 Basic Notation
	2.1 Markov Chains
	2.2 BPCTL

	3 Explicit BPCTL Model Checking
	3.1 Explicit Verification of BPCTL Formulas
	3.2 Implementation Within the Mur$\phi" Verifier

	4 Experimental Results
	4.1 Probabilistic Dining Philosophers
	4.2 Analysis of a Probabilistic Hybrid System with FHP-Murϕ

	5 Conclusions
	References

